张春云赵捷贾慧琳李斐.基于支持向量机的室颤信号检测算法[J].现代生物医学进展英文版,2012,12(9):1751-1754. |
基于支持向量机的室颤信号检测算法 |
Ventricular Fibrillation Detection Algorithm Based on SupportVector Machine |
|
DOI: |
中文关键词: 室性纤颤(VF) TCI 支持向量机(SVM) |
英文关键词: Ventricular Fibrillation TCI Support Vector Machine |
基金项目:山东省自然科学基金(ZR2010HM020);济南市科技发展计划项目(201102005) |
|
Hits: 1056 |
Download times: 1510 |
中文摘要: |
目的:实现室颤信号与非室颤信号的分类,进而实现室颤信号的检测。方法:本文引入了一种基于支持向量机(Support Vector
Machine, SVM)和改进的越限区间算法(TCI)的新算法,其中支持向量机在处理分类和模式识别等问题中具有很大的优势。该
算法采用4s 的滑动窗技术,并利用改进后的越限区间算法(Threshold Crossing Interval,TCI)方法提取心电信号的特征。新算法的
实现如下:在每一滑动窗内采用改进的后的绝对值阈值,计算中间2s 内的平均越限间隔值。并以此TCI 值作为特征参数,输入一
个预先设计好的二分类支持向量机中,从而实现分类。结果:成功实现了室颤信号的检测,通过计算该方法的灵敏度、精确度、预
测性和准确度且与其他方法相比较,可知此新算法总体可靠性优于其他方法。结论:该算法能够实现室颤信号的实时监测,且简
单易行,易于实现,较适合实时的心电监测以及除颤仪器。 |
英文摘要: |
Objective: To realize the discrimination of ventricular fibrillation (VF) and non-ventricular fibrillation (non-VF), accordingly
detection of VF. Methods: The new algorithm was based on support vector machine (SVM) and the improved (TCI) algorithm.
The SWM has great advantages in processing classification and pattern recognition. The new algorithm utilized 4-s-sliding-window technology
and the improved TCI to extract features of ECG. It was implemented as follows: by using absolute thresholds, calculated average
threshold crossing intervals of the middle 2s segment in every sliding window, and then input the TCI values into a binary classification
support vector machine, finally, the discrimination was realized. Results: VF and non-VF were classified successfully. It shows that the
new algorithm was superior to other classical algorithms by calculating quality parameters. Conclusions: This new algorithm can be used
for real time VF detection. It is easier to implement and has greater advantages in real-time execution. It is suitable for ECG monitoring
and defibrillator. |
View Full Text
View/Add Comment Download reader |
Close |