Article Summary
俞海平邬立保陈昌沉窦洪桥朱艳.基于动态方向梯度矢量流模型的脑肿瘤图像分割[J].现代生物医学进展英文版,2012,12(6):1093-1097.
基于动态方向梯度矢量流模型的脑肿瘤图像分割
The Direction of Gradient Vector Flow Based on the Dynamic Model ofBrain Tumor Segmentation
  
DOI:
中文关键词: 脑肿瘤  图像分割  动态方向梯度矢量流模
英文关键词: Brain tumor  Image segmentation  Dynamic Directional  Gradient Vector Flow Models
基金项目:
Author NameAffiliation
YU Hai-ping, WU Li-bao, CHEN Chang-chen, DOU Hong-qiao, ZHU Yan 南京大学医学院附属鼓楼医院放射科 
Hits: 916
Download times: 1129
中文摘要:
      目的:针对GVF Snake 模型算法收敛容易陷入局部极小值及对初始轮廓位置敏感等缺点,提出一种动态方向梯度矢量流模 型(DDGVF),使其更适合医学图像的分割。方法:利用主动轮廓模型的提取和跟踪特定区域内目标轮廓的方法,将其应用于医学 图像如CT、MRI 和超声图像的处理,以获取特定器官及组织的轮廓。结果:动态方向梯度矢量流场(DDGVF)能够较好地提取出 脑肿瘤图像。结论:利用该方法能够较好地分割提取出脑肿瘤图像的肿瘤病变区域,为进一步对其纹理和形状等特征进行描述和 分析提供了可靠的依据。
英文摘要:
      Objective: Convergence of GVF Snake model for the algorithm is easy to fall into local minimum and the initial outline of a position-sensitive and other shortcomings, propose a dynamic model of the direction of gradient vector flow (DDGVF), make it more suitable for medical image segmentation. Method:Extraction using active contour model and track the target within a specific region contour method, can be applied to medical imaging such as CT, MRI and ultrasound image processing, access to specific organs and tissues of the contour. Result:This method can extract the images of brain tumors. Conclusion: It provides a reliable basis for further study on their characteristics such as texture and shape description and analysis.
View Full Text   View/Add Comment  Download reader
Close