文章摘要
赵 侠,刘文强,徐 艳,杨倩倩,王 军.新生儿急性呼吸窘迫综合征病情严重程度的影响因素 及列线图预测模型构建与评价[J].,2024,(23):4506-4509
新生儿急性呼吸窘迫综合征病情严重程度的影响因素 及列线图预测模型构建与评价
Construction and Evaluation of the Factors Influencing the Severity of Neonatal Acute Respiratory Distress Syndromeand the Nomogram Prediction Model
投稿时间:2024-06-18  修订日期:2024-07-14
DOI:10.13241/j.cnki.pmb.2024.23.028
中文关键词: 蒙特勒诊断标准  新生儿  急性呼吸窘迫综合征  列线图预测模型  病情程度
英文关键词: Montreux diagnostic criteria  Neonate  Acute respiratory distress syndrome  Nomogram prediction model  Degree of illness
基金项目:江苏省妇幼健康科研项目(F201850);徐州市卫生健康委科技项目(XWKYHT20230058)
作者单位E-mail
赵 侠 徐州医科大学第一临床医学院 江苏 徐州 221002 徐州医科大学附属医院儿科 江苏 徐州 221002 zhaoxia202404@163.com 
刘文强 徐州医科大学附属医院新生儿科 江苏 徐州 221002  
徐 艳 徐州医科大学附属医院新生儿科 江苏 徐州 221002  
杨倩倩 徐州医科大学附属医院新生儿科 江苏 徐州 221002  
王 军 徐州医科大学附属医院儿科 江苏 徐州 221002  
摘要点击次数: 17
全文下载次数: 14
中文摘要:
      摘要 目的: 探讨基于蒙特勒诊断标准的新生儿急性呼吸窘迫综合征(NARDS)病情严重程度的影响因素,构建预测风险的列线图模型。方法:分析165例符合蒙特勒诊断标准NARDS的临床资料。根据氧指数分为轻度组、中重度组,例数分别为67例和98例。采用多因素Logistic回归分析NARDS病情严重程度的相关因素并构建列线图预测模型。结果:新生儿早发败血症、初产、辅助通气时间、血清中性粒细胞(NEU)、降钙素原(PCT)、C反应蛋白(CRP)水平为NARDS病情严重程度的独立危险因素(P<0.05)。列线图模型预测概率与实际概率贴合度良好。结论:预防围生期感染、重视孕妇的产前保健、避免不必要的辅助通气、定期监测NEU、PCT、CRP等生物标志物,有助于降低重症 NARDS 的风险。基于上述因素建立的列线图预测模型对NARDS病情严重程度具有良好的预测价值。
英文摘要:
      ABSTRACT Objective: To explore the influencing factors of the severity of neonatal acute respiratory distress syndrome (NARDS) based on Montreux diagnostic criteria, and construct a nomogram model to predict the risk. Methods: The clinical data of 165 child patients with Montreux diagnostic criteria for NARDS were analyzed. Child patients were divided into mild group, moderate group and severe group according to the oxygen index, the number of cases was 67, 57 and 41 cases respectively. Multivariate logistic regression was used to analyze the related factors of the severity of NARDS and a nomogram prediction model was constructed. Results: Premature neonatal septicemia, primiparity, auxiliary ventilation time, serum neutrophil count(NEU), procalcitonin(PCT), C-reactive protein(CRP) levels were independent risk factors affecting the severity of NARDS (P<0.05), the nomogram model prediction curve was in good agreement with the ideal curve. Conclusion: Prevention of perinatal infection, attention to prenatal care of pregnant women, avoidance of unnecessary assisted ventilation, and regular monitoring of inflammatory markers such as NEU, PCT and CRP can help reduce the risk of severe NARDS. The nomogram prediction model base on the above factors has a high predictive value for the severity of NARDS.
查看全文   查看/发表评论  下载PDF阅读器
关闭