俞海平邬立保陈昌沉窦洪桥朱艳.基于动态方向梯度矢量流模型的脑肿瘤图像分割[J].,2012,12(6):1093-1097 |
基于动态方向梯度矢量流模型的脑肿瘤图像分割 |
The Direction of Gradient Vector Flow Based on the Dynamic Model ofBrain Tumor Segmentation |
|
DOI: |
中文关键词: 脑肿瘤 图像分割 动态方向梯度矢量流模 |
英文关键词: Brain tumor Image segmentation Dynamic Directional Gradient Vector Flow Models |
基金项目: |
|
摘要点击次数: 930 |
全文下载次数: 1138 |
中文摘要: |
目的:针对GVF Snake 模型算法收敛容易陷入局部极小值及对初始轮廓位置敏感等缺点,提出一种动态方向梯度矢量流模
型(DDGVF),使其更适合医学图像的分割。方法:利用主动轮廓模型的提取和跟踪特定区域内目标轮廓的方法,将其应用于医学
图像如CT、MRI 和超声图像的处理,以获取特定器官及组织的轮廓。结果:动态方向梯度矢量流场(DDGVF)能够较好地提取出
脑肿瘤图像。结论:利用该方法能够较好地分割提取出脑肿瘤图像的肿瘤病变区域,为进一步对其纹理和形状等特征进行描述和
分析提供了可靠的依据。 |
英文摘要: |
Objective: Convergence of GVF Snake model for the algorithm is easy to fall into local minimum and the initial outline
of a position-sensitive and other shortcomings, propose a dynamic model of the direction of gradient vector flow (DDGVF), make it
more suitable for medical image segmentation. Method:Extraction using active contour model and track the target within a specific region
contour method, can be applied to medical imaging such as CT, MRI and ultrasound image processing, access to specific organs and
tissues of the contour. Result:This method can extract the images of brain tumors. Conclusion: It provides a reliable basis for further
study on their characteristics such as texture and shape description and analysis. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |