doi: 10.13241/j.cnki.pmb.2017.19.001

・基础研究・

偏头痛发病机制中 ASICs 通道及 P/Q 钙通道交互影响的电生理研究*

鲁璟一¹ 王 腾² 陈玉婷² 何小华³ 卢祖能¹ 肖哲曼¹ (1武汉大学人民医院神经内科 湖北 武汉 430060;2 武汉大学心血管病研究所 湖北 武汉 430060; 3 武汉大学基础医学院 湖北 武汉 430060)

摘要 目的:ASICs 通道及 P/Q 钙通道均参与偏头痛发生,分析 ASICs 通道及 P/Q 钙通道的电生理相互作用,评价二者的在偏头 痛发生中的交互影响。方法:健康 SPF 级野生型 C57BL/6 鼠嬰,分离培养双侧三叉神经节神经元,采用全细胞膜片钳技术记录三 叉神经节神经元的钙电流变化及动作电位变化。结果:酸性外液及阿米洛利对钙通道无直接影响,酸性外液及 P/Q 通道阻断剂 Aga-IVA 均增加三叉神经元兴奋性(P<0.05),而阿米洛利可阻断这种增加效应(P<0.05)。结论:阿米洛利能够抑制 Aga-IVA 对三叉 神经节神经元兴奋性的增加,可能与其阻断 ASICs 通道有关,提示 ASICs 通道可能为 P/Q 通道突变引发偏头痛的下游机制之一。 关键词:酸敏感通道;P/Q 型钙通道;三叉神经节;动作电位;膜片钳技术

中图分类号:R747.2;R-33 文献标识码:A 文章编号:1673-6273(2017)19-3601-05

Electrophysiological Study on Interaction of ASICs Channels and P/Q Calcium Channels in the Pathogenesis of Migraine*

LU Jing-yi¹, WANG Teng², CHEN Yu-ting², HE Xiao-hua³, LU Zu-neng¹, XIAO Zhe-man¹

(1 Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China;

2 Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, 430060, China;

3 Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430060, China)

ABSTRACT Objective: To evaluate the electrophysiological effects of Acid-sensing cation channels (ASICs) and P/Q-type channel which were all involved in migraine. **Methods:** Trigeminal ganglion (TG) tissues were collected from healthy SPF wild-type C57BL/6 mice, whole-cell patch clamp technique was used to record the calcium currents of TG neurons and the changes of action potentials. **Results:** Acid and amiloride had no effect on Calcium channel directly, the acid and Aga-IVA increased the excitability of trigeminal neurons, (P <0.05), and Amiloride blocked this increments (P<0.05). **Conclusion:** Amiloride can inhibit the increase of excitability of TG neurons induced by Aga-IVA, which may be related to the blockage of ASICs channels, indicating that ASICs channels may involve in the mechanisms of migraine caused by P/Q channel mutations.

Key words: Acid-sensing cation channels; P/Q-type calcium channel; Trigeminal ganglion neuron; Action potentials; Patch clamp technique

Chinese Library Classification(CLC): R747.2; R-33 Document code: A Article ID: 1673-6273(2017)19-3601-05

前言

P/Q-型电压门控钙离子通道(P/Q-type voltage-gated-Ca²⁺channels,简称 P/Q 通道)是一类由 CACNA1A 基因编码的 电压门控钙离子通道,被证实与多种神经系统疾病如共济失 调,偏头痛和阿尔茨海默病等有关^[1-4]。P/Q 通道的 T666M 突变 可增加三叉神经元的兴奋性,增加疼痛诱发的风险^[5]。

酸敏感离子通道(Acid-sensing cation channels,简称 ASICs 通道)是一类由氢离子(H⁺)激活的配体门控阳离子通道,在神 经系统中分布广泛⁶⁰,与疼痛和机械感觉密切相关,近年来也有

文献报道 ASICs 通道通过组织酸化被激活而参与偏头痛的病理生理过程^们。

与偏头痛发生相关的 P/Q 通道与 ASICs 通道,均可通透 Ca²⁺,且在三叉神经节上存在共同位点。三叉神经元(Trigeminal ganglion,TG)接受来自头面部皮肤和肌肉的传入信息,其 兴奋性的增加会引起痛觉过敏¹⁸。ASICs 通道与 P/Q 通道之间 是否存在交互作用目前尚未见报道,本文以三叉神经节神经元 细胞为研究对象,从电生理角度探讨 ASICs 通道和 P/Q 通道间 的相互作用。

^{*} 基金项目:国家自然科学基金项目(81471133,30900459);湖北省自然科学基金项目(2014CFB734);
国家教育部新教师基金项目(200804861046);武汉大学协同创新项目
作者简介:鲁璟一(1992-),硕士研究生,研究方向:神经病学,电话:15527862118,E-mail:LJY_whu@163.com
△ 通讯作者:卢祖能(1964-),博士生导师,研究方向:神经病学,E-mail:lzn196480@126.com;
肖哲曼(1978-),硕士生导师,神经病学,E-mail:zmxiao@whu.edu.cn
(收稿日期:2016-01-13 接受日期:2016-02-09)

1 材料和方法

1.1 实验动物

健康 SPF 级野生型 C57BL/6 小鼠出生 5-7 天鼠婴,购于武 汉大学实验动物中心。

1.2 主要试剂

PcTx1(Smartox),APETx2(Smartox),Aga-IVA(Smartox), 阿米洛利 (Sigma)、细胞种植液:DMEM 培养基 100 mL,Glucose 0.5 g, NaHCO3 20 mg, 转铁蛋白 10 mg, 胰岛素(12.5 mg/mL)20 µL,FBS 10 mL^[5];细胞培养液:DMEM 培养基 100 mL, Glucose 0.5 g, NaHCO3 20 mg, 转铁蛋白 10 mg, B-27 2 mL,FBS 5 mL^[5];记录 ASICs 电流的电极外液(mM):NaCl 150, KCl 5, MgCl₂·6H₂O 1, CaCl₂ 2, Glucose 10, HEPES 10, 根据需 要用 NaOH 调 pH 至 7.4 和 6.0, 并调整渗透压为 310 mosmol/kg H₂O^[9];记录 ASICs 电流的电极内液(mM):KCl 140, NaCl 10, MgCl₂ • 6H₂O 1, EGTA 5, Na-ATP 2, HEPES 10, 用 KOH 调 pH 至 7.4,并调整渗透压为 290 mosmol/kg H₂O^[9];记录 钙电流的含钡外液 (mM):CsCl 20, TEA-Cl 140, BaCl 25, HEP-ES 10, Glucose 25, 用 CsOH 调增 pH 至 7.3, 并调整渗透压为 310 mosmol/kg H₂O^[5];记录钙电流细胞内液(mM):CsCl 110, EGTA 10, Na-ATP 8, HEPES 25, 用 CsOH 调增 pH 至 7.3, 并调 整渗透压为 290 mosmol/kgH2O^[5]。

1.3 三叉神经节神经元细胞的分离和培养

分离和原代培养三叉神经节神经元的步骤依据相关文献 ^[5],将健康 C57BL/6 鼠婴断头处死,取出三叉神经节后剪碎,用 10 mg/mL 胶原酶和 5 mg/mL 胰酶分别在 37℃水浴锅中消化 10 min 左右,待消化完全后,加入含胎牛血清的种植液终止消 化,离心(100 g× 10 min)后弃上清,加入细胞种植液,吹打形成 细胞悬液,接种于放置玻片的培养板中,于 CO₂培养箱中培养 6h后,补充种植液至每孔 600 μL,24h 后置换一半细胞维持液, 培养 3-6 天后选择细胞状态较好的细胞进行膜片钳实验^[5]。

1.4 全细胞膜片钳记录

膜片钳实验所所用的玻璃微管为硬质玻璃管,采用 PC-97 型微电极拉制仪(Sutter Instrument,美国)制备,玻璃微电极尖 端拉制直径为 1-2 μm,充灌电极内液后入水电阻为 2-4 MΩ^[5]。

采用 EPC-9 膜片钳放大器(HEKA 公司,德国)进行全细胞 膜片钳记录,参考电极为 Ag-AgCl 电极,电流测量和记录使用 Pulse+pulsefit 软件(HEKA),用数模转换器采集信号数据。将充 灌电极内液的微电极固定于放大器前端,将其移至细胞正上方 后补偿液接电位,微调使电极轻轻压在细胞上,将细胞钳制在 -80 mV,施以负压进行封接,待封接电阻至 GΩ 以上后破膜,形 成全细胞记录模式,补偿慢电容和漏电流,采集和滤波频率分 别为 10 kHz 和 1 kHz 在电流钳模式下记录动作电位,实验过 程中细胞始终钳制在 -80 mV,采用微量给药系统给予细胞外 液^[9]。整个实验过程中温度控制在 25 ℃。

1.5 统计学方法

采用 SPSS 20.0 软件进行统计学分析,计量资料以均数±标准差(x±s)表示,给药前后比较采用配对 t 检验,不同组间比较采用单因素方差分析,P<0.05 为差异有统计学意义。Graph-Pad Prism5 软件作图。

2 结果

2.1 激活 / 抑制酸敏感通道(ASICs)不影响钙通道电流

A: Current densities of calcium channel subtypes after acid; B: Current densities of calcium channel subtypes after amiloride

将细胞外液由 7.4 迅速降低到 6.0 后,TG 神经元钙电流无 明显变化(图 1A)。pH7.4 组(n=5)21.31± 12.58 pA/pF,pH6.0 组(n=5)23.63± 15.28 pA/pF,P 值 = 0.2341,两组间比较无统计 学差异;给予阿米洛利(AMI)后,TG 神经元钙电流无明显变化 (图 1B),对照组 (n=7)61.04± 40.19 pA/pF,AMI 组(n=7) 64.78± 38.76 pA/pF,P 值 = 0.2091,两组间比较无统计学差异; 提示激活或阻断酸敏感离子通道对 P/Q 型钙通道无直接影响。 2.2 激活 ASICs 增加 TG 细胞兴奋性 为研究细胞兴奋性,将神经元钳制在静息电位并注入1s的25pA的去极化电流,逐步增加注入的电流值,直到有1个动作电位(action potential, AP)产生为止,此时注入的电流值即为基强度^[5](n=22,236.14±58.43pA)测量得到的第一个动作电位即为阈电位(即dV/dt超过10V/s时的膜电位的值,n=22,-31.51±7.59mV),振幅(n=22,110.72±15.17mV)及后电位振幅(n=22,-12.35±6.38mV)。如表1所示,即为三叉神经元动作电位的特性。

 \cdot 3603 \cdot

表1 三叉神经元细胞动作电位特性(x±s)

Table 1 Intrinsic properties of TG neurons

Capacitance, pF	Vrest, mV	Threshold, mV	Rheobase, pA	AP Amplitude, mV	AHP Amplitude, mV	Cell Number
23.64± 6.68	-57.41± 10.31	-31.51± 7.59	236.14± 58.43	110.72± 15.17	-12.35± 6.38	22

Note: Vrest, resting membrane potential; AP, action potential; AHP, after hyperpolarization. t-test.

表 2 改变外液 pH 值对记录到 ASICs 电流的 TG 细胞 AP 的影响

Table 2 Intrin	sic properties	of TG neurons wit	th ASICs current af	ter change the	oH of extracellular solution

pH	Canacitanaa nF	Vrest, mV	Threshold, mV	Phoobasa nA	AP Amplitude,	AHP Amplitude,	Coll Number
	Capacitance, pr			Kilcobase, pA	mV	mV	Cell Nullibel
7.4	22 08+ 5 42	-59.20± 8.8	-31.87± 7.95	286.5± 96.96	112.62± 19.94	-11.31± 6.51	10
6.0	22.98± 3.43	-46.84± 12.99**	-22.21± 19.71	216± 112.12**	88.57± 22.56**	-15.68± 7.99*	10

Note: * P<0.05; ** P<0.01.

图 2 降低细胞外液 pH 值前后 AP 的静息电位(A)、阈电位(B)、基强度(C)、振幅(D)、后电位振幅(E)的变化

Fig.2 Changes of Vrest(A), Threshold(B), Rheobase(C), AP Amplitude(D) and AHP Amplitude(E) of TG neurons after change the pH of extracellular solution

Note: Data are expressed as x± SD, n=10. *P<0.05, compared with group 7.4; ** P<0.01, compared with group 7.4.

表 3 改变外液 pH 值对未记录到 ASICs 电流的 TG 细胞上 AP 的影响

Table 5 Intrinsic properties of 10 neurons without ASICs current after change the prior extracential solution								
pH	Canacitance nE	Vrest, mV Threshold	Threshold mV	Phashasa nA	AP Amplitude,	AHP Amplitude,	Cell Number	
	Capacitance, pr		Threshold, hiv	Kilcobase, pA	mV	mV	Cell Nulliber	
7.4	24.071 (5)	-57.96± 8.09	-33.82± 7.27	252.22± 107.5	107.91± 11.72	-15.05± 5.58	9	
6.0	24.0/± 0.50	-62.67± 10.99	-36.38± 10.16	281.67± 85.84	106.61± 12.63	-13.16± 6.19	9	

将细胞外液迅速变为酸性,记录动作电位相关参数,在可 以记录出 ASICs 电流的细胞上,静息电位明显升高(表 2): pH7.4 组(n=10)-59.20± 8.8 mV,pH6.0 组(n=10)-46.84± 12.99 mV,P值=0.000,两组间比较有统计学差异;而基强度明显降 低,pH7.4 组(n=10)为 286.5± 96.96 pA,pH6.0 组(n=10)为 216± 112.12 pA,P 值 =0.001,两组间相比有统计学差异,表明酸性环境可提高神经元兴奋性,使神经元更容易被兴奋。

而对于未记录到 ASICs 电流的细胞上,则无此变化(表3), 说明酸性环境使神经元兴奋性升高可能与 ASICs 通道相关。

表 4	给予	Aga-IVA	时	AP	的变化
-----	----	---------	---	----	-----

	Table 4 Intrinsic properties of TG neurons after given Aga-IVA							
Vrest, mV Threshold,mV Rheobase,pA AP Amplitude, mV AHP Amplitude, mV Cell Num								
No blocker	-56.24± 5.45	-34.21± 6.72	265.00± 94.19	101.54± 10.55	-14.47± 1.97	10		
Aga-IVA	-44.66± 7.59**	-28.61± 6.66*	200.50± 96.74**	83.04± 12.66**	-13.60± 4.51	10		
Note: *D<0.05 ** D<0	Loto: *D=0.05 ** D=0.01							

Note: *P<0.05 ** P<0.01.

图 3 给予 Aga-IVA 前后 AP 的静息电位(A)、阈电位(B)、基强度(C)、振幅(D)、后电位振幅(E)的变化 Fig.3 Changes of Vrest(A), Threshold(B), Rheobase(C), AP Amplitude(D) and AHP Amplitude(E) of TG neurons after given Aga-IVA Note: Data are expressed as x± SD, n=10. *P<0.05, compared with group control; **P<0.01, compared with group control.

2.3 阻断 P/Q 型钙通道增加 TG 细胞兴奋性

给予 P/Q 型钙离子通道阻断剂 Aga-IVA 后,记录动作电 位相关参数,在可以记录出 ASICs 电流的细胞上,静息电位明 显升高(表 4,图 3A):对照组(n=10)-56.24± 5.45 mV,Aga-IVA 组(n=10)-44.66± 7.59 mV,P 值 =0.002,两组间比较有统计学 差异;而阈值明显降低(图 3B),对照组(n=10)为 -34.21± 6.72 mV,Aga-IVA 组(n=10)-28.61± 6.66 mV,P 值 =0.019,基强度 也明显降低(图 3C),对照组(n=10)为 265.00± 94.19pA,Aga-I-VA 组(n=10)200.50± 96.74 pA,P 值 =0.000,振幅也有所降低 (图 3D),对照组 (n=10)为 101.54± 10.55 mV,Aga-IVA 组 (n=10)83.04± 12.66 mV,P 值 =0.001,两组间比较有统计学差 异,说明阻断 P/Q 通道可提高神经元兴奋性。

表 5 给予 Aga-IVA 后再给予 AMI 的 AP 的变化

Table 5 Intrinsic properties of TG neurons which have been given Aga-IVA after given AMI

	Vrest, mV	Threshold,mV	Rheobase,pA	AP Amplitude, mV	AHP Amplitude, mV	Cell Number
Control	-61.87± 6.40	-37.66± 5.39	286.25± 191.89	101.87± 17.80	-13.15± 2.35	4
Aga-IVA	-46.72± 11.52	-30.62± 3.71	186.25± 178.30**	85.51± 14.51	-17.00± 3.32	4
AMI+Aga-IVA	-41.64± 14.44	-23.14± 9.99	253.75± 186.61 [#]	67.21± 15.61	-11.74± 3.75 [#]	4

Note: #P<0.05; **P<0.01.

图 4 给予 Aga-IVA 后再给予 AMI 的 AP 的静息电位(A)、阈电位(B)、基强度(C)、振幅(D)、后电位振幅(E)的变化 Fig.4 Changes of Vrest(A), Threshold(B), Rheobase(C), AP Amplitude(D) and AHP Amplitude(E) of TG neurons which have been given Aga-IVA after given AMI

Note: Data are expressed as x± SD, n=4. # P< 0.05, compared with group Aga-IVA; **P< 0.01, compared with group control.

2.4 AMI 阻断 Aga-IVA 对神经兴奋性的增加

给予 P/Q 型钙离子通道阻断剂 Aga-IVA 后再给予 AMI, 记录动作电位相关参数,在可以记录出 ASICs 电流的细胞上, 两两组间对比 (表 5): 基强度 Aga-IVA 组 (n=4,186.25± 178.30pA)较对照组(n=4,286.25± 191.89 pA)明显降低,P 值 =0.002,而 AMI 组(n=4,253.75± 186.61 pA)较 Aga-IVA 组明 显回升,P 值 =0.016,两组对比均有统计学差异,对照组和 AMI 组之间并无显著差异;静息电位、阈电位、振幅上 AMI 组较 Aga-IVA 组有降低趋势,尚无统计学差异;后电位振幅仅 AMI 组 (n=4,-11.74± 3.75 mV)和 Aga-IVA 组(n=4,-17.00± 3.32 mV) 相比有降低趋势,P 值 =0.003。说明 AMI 参与了 Aga-IVA 增加 细胞兴奋性的过程,而在未记录出 ASICs 电流的细胞上则得不 到此种变化,说明是 AMI 抑制 ASICs 通道而影响了 Aga-IVA 对细胞兴奋性的作用。

3 讨论

偏头痛是最常见的神经科疾病之一,因其严重影响患者社 会功能,与卒中等同,被誉为全球疾病负担最重的疾病之一^[10,11], 其病因复杂,人们对其发病机制尚无清楚的认知,近年来,随着 一些头痛模型的建立,信号转导机制成为近年的研究趋势。

家族性偏瘫性偏头痛(familial hemiplegic migranine, FHM) 是一种单基因常染色体显性遗传疾病,因其遗传特性近年被广 泛研究。目前公认的 FHM 致病基因为编码 P/Q 通道的 CANA1A 基因,其 T666M 与 R1347Q 突变是最常见的两种突 变[12,13]。T666M 突变可降低三叉神经元的 P/Q 型钙电流,增加 三叉神经元的兴奋性^[5],从而参与偏头痛的发生过程。Tottene 等人的研究表明,R1347Q 突变可增加神经元的 P/Q 型钙电流, 增加皮质扩散性抑制(cortical spreading depression, CSD)的易 感性[14],被认为是偏头痛先兆发生的病理生理学机制之一。因 此,P/Q 通道阻断剂的开发成为治疗偏头痛的重要研究方向, 但是, Isope P 等人发现, 给大鼠直接鞘内注射 P/Q 阻断剂 ω-agatoxin IVA 不能抑制机械刺激引起的疼痛^[15]。由于选择性 P/Q 通道阻断剂难以获得及效果不佳,而相关的小分子肽难以通过 血脑屏障^[1],寻找 P/Q 通道的下游机制有了新的诉求。本实验直 接对体外培养的三叉神经节细胞使用 P/Q 阻断剂 ω-agatoxin I-VA,发现 ω-agatoxin IVA 可以引起细胞的静息电位的升高 (P=0.002)及基强度的降低(P=0.000),说明 TG 细胞在 ω-agatoxin IVA 的直接作用下更容易被兴奋,但是具体通过什么机 制尚待进一步研究。

酸敏感离子通道(ASICs)是一类由氢离子(H⁺)激活的配体 门控阳离子通道,在组织酸化时被激活,引起细胞内 Ca²⁺释放 ^[16]。目前已成功克隆了 6 种 ASICs 亚基蛋白:ASIC1a、ASIC1b、 ASIC2a、ASIC2b、ASIC3 和 ASIC4^[17],其中 ASIC1a 和 ASIC3 被 普遍认为是一种伤害性感觉的受体,与偏头痛有很大联系^[18,19], 并在炎症、缺血和组织酸中毒等病理变化中起作用^[20]。Goadsby 等研究发现,ASICs 通道阻断剂阿米洛利可阻断 CSD,说明 A-SICs 通道参与偏头痛的发生^[7]。P/Q 通道及 ASICs 通道在三叉 神经节神经元上均有表达,均参与偏头痛的病理生理过程,且 均通过 Ca²⁺,ASICs 通道激活可能是 P/Q 通道突变致 FHM 的 下游机制,ASICs 可能成为有先兆偏头痛治疗的新靶点。本实 验也证明,在能记录到 ASICs 电流的 TG 细胞上,给予酸刺激 激活 ASICs 通道后,细胞的静息电位升高(P=0.000)而基强度 降低(P=0.001),说明 ASICs 通道的激活可以使 TG 细胞兴奋 性增加。

酸性刺激激活 ASICs 通道及阻断 P/Q 通道均能增加细胞 兴奋性,但是阻断 P/Q 通道对 ASICs 电流并没有直接影响,阻 断 ASICs 电流对 P/Q 电流也没有直接影响。为进一步探讨 P/Q 通道和 ASICs 通道之间的交互作用,我们在对 TG 细胞使用 ω-agatoxin IVA 后再给予阿米洛利,发现原本明显降低的细胞 基强度(P=0.002)回到了之前的水平(P=0.015),P/Q 通道阻断 剂无法再增加细胞兴奋性,表明 ASICs 通道的激活确有可能是 P/Q 通道突变导致偏头痛的下游机制之一,在 P/Q 通道突变和 ASICs 通道激活之间可能还存在着尚未知的通路机制。

综上所述,激活 ASICs 通道及阻断 P/Q 通道均能增加细胞 兴奋性,ASICs 通道的激活可以阻断 P/Q 通道对细胞兴奋性的 影响。ASICs 通道的激活确有可能是 P/Q 通道突变导致偏头痛 的下游机制之一。

本实验的创新之处在于将 ASICs 通道和 P/Q 通道联系起来,探讨两者之间的交互作用,对于深入理解 ASICs 激活对偏头痛的诱发机制,及 P/Q 通道突变的信号转导通路均有重要意义,国内外尚未见类似报道。本实验的不足之处,在于未能进一步探究 ASICs 通道的哪一种亚型参与了 P/Q 通道突变引起偏头痛的过程。故后续研究中可以通过增加 ASICs 亚基的特异性阻断剂进行完善以探究 P/Q 通道及 ASICs 通道交互作用的机制,为偏头痛治疗提供新的靶点。

参考文献(References)

- Nimmrich V, Gross G. P/Q-type calcium channel modulators [J]. British Journal of Pharmacology, 2012, 167(4): 741-759
- [2] Nigussie F, Huang P S, Lukauskis K,et al.Neural cell proliferation and survival in the hippocampus of adult CaV 2.1 calcium ion channel mutant mice[J]. Brain Research, 2016
- [3] Martín-García E, Mannara F, Gutiérrez-Cuesta J, et al. Intrathecal injection of P/Q type voltage-gated calcium channel antibodies from paraneoplastic cerebellar degeneration cause ataxia in mice [J]. Journal of Neuroimmunology, 2013, 261(1-2): 53-59
- [4] Adams P J, Rungta R L, Garcia E, et al. Contribution of calcium-dependent facilitation to synaptic plasticity revealed by migraine mutations in the P/Q-type calcium channel[J]. Proceedings of the National Academy of Sciences, 2010, 107(43): 18694-18699
- [5] Tao J, Liu P, Xiao Z, et al. Effects of familial hemiplegic migraine type 1 mutation T666M on voltage-gated calcium channel activities in trigeminal ganglion neurons [J]. Journal of Neurophysiology, 2012, 107(6): 1666-1680
- [6] Alvarez D L R D, Krueger S R, Kolar A, et al. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system[J]. J Physiol, 2003, 546(Pt 1): 77-87
- [7] Holland P R, Akerman S, Andreou A P, et al. Acid-sensing ion channel
 1: a novel therapeutic target for migraine with aura [J]. Ann Neurol,
 2012, 72(4): 559-563
- [8] Goto T, Oh S B, Takeda M, et al. Recent advances in basic research on the trigeminal ganglion. [J]. Journal of Physiological Sciences, 2016, 66(5): 1-6 (下转第 3614 页)

2015, 15(35): 6804-6807

Wang Shan, Diao Yan-jun, Ma Yue-yun, et al. Prokaryotic expression of SA-hirudin-RGD fusion protein and identification of its anticoagulant and anti-platelet aggregation function [J]. Progress in Modern Biomedicine, 2015, 15(35): 6804-6807

- [19] Johari V, Loke C. Brief overview of the coagulation cascade [J]. Disease-a-month, 2012, 58(8): 421-423
- [20] 宋小莉.中药归经理论现代实验研究综述[J].山东中医药大学学报,
 2001, 25(1): 76-78
 Song Xiao-Li. Modern experimental research of attributive channel

theory of chinese herbal medicine[J]. Journal of Shandong University of Traditional Chinese Medicine, 2001, 25(1): 76-78

[21] 李保玉, 刘家云, 屈园利, 等. SELEX 技术筛选纤维蛋白适配子的研究[J]. 现代生物医学进展, 2015, 15(11): 2037-2041
 Li Bao-yu, Liu Jia-yun, Qu Yuan-li, et al. The study of screening fib-

rin aptamer by SELEX technology [J]. Progress in Modern Biomedicine, 2015, 15(11): 2037-2041

[22] 王建青,赵宝泉.治疗血栓性疾病药物的研究进展 [J].河北医学, 2007,13(9):1167-1170

Wang Jian-qing, Zhao Bao-quan. Progress of drug research in treatment of thrombotic diseases [J]. He Bei Medicine, 2007, 13 (9): 1167-1170

- [23] Boudal P, Sommet A, Bagheri H, et al. Bleedings induced by oral anticoagulants: a study of adverse drug reactions reported to Midi-Pyrenees PharmacoVigilance Centre between 2003 and 2006[J]. Therapie, 2010, 65(6): 567-569
- [24] 辛世杰,李璇. 抗凝药物的分类与合理应用[J]. 中国实用外科杂志, 2011, 31(12): 1138-1140

(上接第 3605 页)

- [9] Fu H, Fang P, Zhou H Y, et al. Acid-sensing ion channels in trigeminal ganglion neurons innervating the orofacial region contribute to orofacial inflammatory pain [J]. Clin Exp Pharmacol Physiol, 2016, 43(2): 193-202
- [10] Pradhan A A, Smith M L, McGuire B, et al. Characterization of a novel model of chronic migraine[J]. Pain, 2014, 155(2): 269-274
- [11] Vos T, Flaxman A D, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010[J]. Lancet, 2012, 380(9859): 2163-2196
- [12] Pietrobon D. Calcium channels and migraine [J]. Biochim Biophys Acta, 2013, 1828(7): 1655-1665
- [13] Topakian R, Pischinger B, Stieglbauer K, et al. Rare clinical findings in a patient with sporadic hemiplegic migraine: FDG-PET provides diminished brain metabolism at 10-year follow-up [J]. Cephalalgia, 2014, 34(5): 392-396
- [14] Tottene A, Conti R, Fabbro A, et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice[J]. Neuron, 2009, 61(5): 762-773

Xin Shi-jie, Li Xuan. Classification and reasonable application of anticoagulant drugs [J]. Chinese Journal of practical surgery, 2011, 31 (12): 1138-1140

- [25] Walenga JM, Prechel M, Hoppensteadt D, et al. Apixaban as analternate oral anticoagulant for the management of patients with heparin-induced thrombocytopenia[J]. Clinical and Applied Thrombosis/ Hemostasis, 2013, 19(5): 482-487
- [26] 郑巧燕.水蛭素及重组水蛭素的研究概况 [J].海峡药学, 2013, 25
 (8): 108-110

Zheng Qiao-yan. Research situation of hirudin and recombinant hirudin[J]. Strait Pharmaceutical Journal, 2013, 25(8): 108-110

- [27] Deng R, Qu H, Liang L, et al. Tracing the therapeutic process of targeted aptamer drug conjugate on cancer cells by surface-enhanced Raman scattering spectroscopy [J]. Anal Chem, 2017, 89 (5): 2844-2851
- [28] Liu B, Zhang J, Liao J, et al. Aptamer-functionalized nanoparticles for drug delivery[J]. J Biomed Nanotechnol, 2014, 10(11): 3189-203
- [29] Wang J, Ding K, Chen Y, et al Detection of thrombin with an aptamer-based macromolecule biosensor using bacterial ghost system [J]. ACS Synth Biol, 2014, 3(12): 963-965
- [30] 陈麒名,常菲菲,李茜,等. 播娘蒿转录因子 DsCBF1 突变体的构 建及其蛋白质的 EMSA 试验分析[J].应用与环境生物学报,2016, 22(2): 179-183

Chen Qi-ming, Chang Fei-fei, Li Qian, et al. Construction of transcription factorDsCBF1 mutant and EMSA analysis of its protein[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(2): 179-183

- [15] Isope P, Murphy T H. Low threshold calcium currents in rat cerebellar Purkinje cell dendritic spines are mediated by T-type calcium channels[J]. J Physiol, 2005, 562(Pt 1): 257-269
- [16] Noel J, Salinas M, Baron A, et al. Current perspectives on acid-sensing ion channels: new advances and therapeutic implications [J]. Expert Rev Clin Pharmacol, 2010, 3(3): 331-346
- [17] Liu S, Cheng X Y, Wang F, et al. Acid-sensing ion channels: potential therapeutic targets for neurologic diseases [J]. Transl Neurodegener, 2015, 4: 10
- [18] Yudin Y K, Tamarova Z A, Krishtal O A. Peripherally applied neuropeptide SF is equally algogenic in wild type and ASIC3-/- mice[J]. Neurosci Res, 2006, 55(4): 421-425
- [19] Duan B, Wu L J, Yu Y Q, et al. Upregulation of acid-sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity [J]. J Neurosci, 2007, 27 (41): 11139-11148
- [20] Hughes P A, Brierley S M, Young R L, et al. Localization and comparative analysis of acid-sensing ion channel (ASIC1,2,and3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia[J]. J Comp Neurol, 2007, 500(5): 863-875