・技术与方法・

基于支持向量机的室颤信号检测算法*

张春云 赵 捷 贾慧琳 李 斐

(山东师范大学物理与电子科学学院山东济南250014)

摘要 目的 :实现室颤信号与非室颤信号的分类 ,进而实现室颤信号的检测。方法 :本文引入了一种基于支持向量机(Support Vector Machine, SVM)和改进的越限区间算法(TCI)的新算法 ,其中支持向量机在处理分类和模式识别等问题中具有很大的优势。该 算法采用 4s 的滑动窗技术 ,并利用改进后的越限区间算法(Threshold Crossing Interval ,TCI)方法提取心电信号的特征。新算法的 实现如下 :在每一滑动窗内采用改进的后的绝对值阈值 ,计算中间 2s 内的平均越限间隔值。并以此 TCI 值作为特征参数 ,输入一 个预先设计好的二分类支持向量机中 ,从而实现分类。结果 :成功实现了室颤信号的检测 ,通过计算该方法的灵敏度、精确度、预 测性和准确度且与其他方法相比较 ,可知此新算法总体可靠性优于其他方法。结论 :该算法能够实现室颤信号的实时监测 ,且简 单易行 ,易于实现 ,较适合实时的心电监测以及除颤仪器。

关键词 室性纤颤(VF) ;TCI ;支持向量机(SVM)

中图分类号:TP391 文献标识码:A 文章编号:1673-6273(2012)19-1751-04

Ventricular Fibrillation Detection Algorithm Based on Support Vector Machine*

ZHANG Chun-yun, ZHAO Jie, JIA Hui-lin, LI Fei

(College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China)

ABSTRACT Objective: To realize the discrimination of ventricular fibrillation (VF) and non-ventricular fibrillation (non-VF), accordingly detection of VF. Methods: The new algorithm was based on support vector machine (SVM) and the improved (TCI) algorithm. The SWM has great advantages in processing classification and pattern recognition. The new algorithm utilized 4-s-sliding-window technology and the improved TCI to extract features of ECG. It was implemented as follows: by using absolute thresholds, calculated average threshold crossing intervals of the middle 2s segment in every sliding window, and then input the TCI values into a binary classification support vector machine, finally, the discrimination was realized. Results: VF and non-VF were classified successfully. It shows that the new algorithm was superior to other classical algorithms by calculating quality parameters. Conclusions: This new algorithm can be used for real time VF detection. It is easier to implement and has greater advantages in real-time execution. It is suitable for ECG monitoring and defibrillator.

Key words: Ventricular Fibrillation; TCI; Support Vector Machine Chinese Library Classification (CLC) : TP391 Document code: A Article ID :1673-6273(2012)09-1751-04

前言

随着心脏猝死现象的日益增长,研制一种可靠便携的心电 监测仪器迫在眉睫。正常人的心脏搏动时为窦性心律,发生功 能性病变时,常出现早搏、心率增加甚至心室扑动,增加适当的 锻炼和休息,心脏的功能可以得到恢复;而心脏心室出现心动 过速(Ventricular Tachycardia, VT)时,如不及时诊断观察,很容 易诱发心室纤颤(VF),当发生心室纤颤时,如不及时除颤,则 可能导致心脏组织和机能的损伤甚至心肌组织的死亡。心室纤 颤是一种恶性心律,易引发猝死现象。据美国心脏协会(American Heart Association, AHA)统计,大多数心脏发生病变时,开 始呈现快速或/和混乱的活动-- 室性心动过速或心室纤颤,因 此预测和预防心室纤颤,建立可靠的便携式心电图检测仪器具 有重要意义。 本文提出了一种新的基于支持向量机的新算法 SVM 是 一种基于有限样本的统计学习算法,在解决小样本、非线性及 高维模式识别问题中表现出许多特有的优势^[1]。本文中还引用 了 TCI 算法,并对该方法进行了改进。改进主要对窗长度和阈 值选取进行改进。这里计算每个 4s 滑动窗下中间两秒的 TCI 值。采用绝对阈值,用于增大室颤信号和非室颤信号的特征差 距,实现更好的检测和分类。在这里,仅对室颤和非室颤信号进 行分类。

为了深入了解各算法的心电图分析性能,在同等条件下, 利用大量数据进行算法检测是必不可少的^[2]。常用的数据库是 波斯顿的贝斯以色列医院和美国麻省理工理工学院心律失常 数据库(BIH-MIT)^[3],克雷顿大学室性心律失常数据库(CU)^[4], 美国心脏协会数据库(AHA)^[5]。本文在^[6]中采用了完整的 BIT-MIH 和 CU 数据库,在窗长度为 4s 的条件下这意味着此

* 基金项目:山东省自然科学基金(ZR2010HM020);济南市科技发展计划项目(201102005) 作者简介:张春云:女,硕士研究生,研究方向:信号与信息处理。E-mail zhangchunyun1009@126.com (收稿日期:2011-09-03 接受日期:2011-10-19) • 1752 •

算法约有 277163 个检测结果。并计算了灵敏度 特异性 预测 性和准确度四个质量参数且与其他算法进行了比较。

1 材料与方法

本文提出的分类算法是基于支持向量机技术,改进的 TCI 算法。算法的基本流程图如图 1 所示,首先对信号进行预处理, 利用改进的 TCI 技术计算出信号的 TCI 值,然后将该 TCI 值 作为信号的特征值,输入预先设计好的二分类支持向量机中, 输出结果,即实现了室颤和非室颤信号的分类。

Fig.1 The flow chart of new algorithm

1.1 信号的预处理

由于所用的数据取自 BIH-MIT 和 CU 数据库,前者的信 号抽样频率为 360Hz,后者信号抽样频率为 250Hz,并且所应用 的检测仪器抽样频率为 200HZ,故将待用数据库的数据再抽样 到 200HZ。本文中,采用与¹⁷相同的滤波预处理,该滤波算法分 四步完成:首先,从信号中减去信号的平均值;其次,应用一个 滑动平均滤波器消除高频噪声;再次,抑制漂移,这可以消除来 自外部而非心脏内部的低频噪声;最后,利用截止频率为 30Hz 的巴特沃斯滤波器消除高于 30Hz 的信号。高于 30Hz 信号并 不影响模拟测试,运用这一预处理过程,大大减少了噪声的干 扰,使得的检测更加精确。

1.2 改进的 TCI 算法

TCI 算法^[8] ,即越限区间算法 ,是在时域实现的一种室颤检测方法。经过信号预处理的 ECG 信号 ,选定一个特定阈值 ,根据高于或低于该阈值将 ECG 信号生成一个二进制序列 , 通过一些经验研究 ,选择每一秒信号峰值的 20%作为阈值 ,因此 ,阈值可以根据每秒信号的变换而变化 ,实现自适应。在每一秒中 , ECG 信号会越过检测门限一次或者多次 , 这里计算出过阈值的脉冲之间的平均间隔 TCI ,计算方法如下 :

$$TCI = \frac{1000}{(n-1) + \frac{t_2}{t_1 + t_2} + \frac{t_3}{t_3 + t_4}} (ms)$$
(1)

其中 N t₁,t₂,t₃,t₄ 由图 2 确定。

以上算法是以 1s 为一时间段进行处理 ,为确定 t_1, t_2, t_3, t_4 四 个参数 ,一般常采用 3s 的滑动窗技术 ,第一秒和第三秒用来确 定 t_2 和 t_4 ,第二秒用来计算 TCI 值。

由于本文中使用该方法作为对 ECG 信号提取特征 TCI 值,因此就此方法存在的缺陷进行改进:

(1)由于 TCI 方法中是对 1s 内的信号求 TCI 值,而在窦性 心律信号中,有的心率低于 60bpm,并且数据库中包含许多心 率低于 60bpm 的记录,并且由于其他病例的存在,一次心跳后 可能会出现停顿,这些都将会导致在处理信号的 1s 中丢失 R 波的波峰^[9]。当这种情况发生时,TCI 算法就会得出错误的判 定,因此本文中,我们采用 4s 的滑动窗技术,第一和第四秒用 来确定 t₁ 和 t₄ 对中间两秒的信号求 TCI 值,从而减少误判。

(2)为增大 VF 信号和非 VF 信号的特征(TCI)差距,使得 SVM 能够更准确的进行分类,这里采用绝对值阈值,即将窗长 内信号绝对值最大值的 20%作为阈值,当 ECG 信号的绝对值 大于最大值的 20%时,被判定为 1,否则判定为 0。即如图 3 所 示,改进后 VF 和非 VF 信号的 TCI 值差距变大。

经过改进后 ,滑动窗的长度为 4s,并且采用绝对值阈值 ,此 时 TCI 的计算公式变为:

$$TCI = \frac{2000}{(n-1) + \frac{t_2}{t_1 + t_2} + \frac{t_3}{t_3 + t_4}} (ms)$$
(2)

根据此公式,计算出新的 TCI 值,作为 ECG 信号的特征 值,作为输入支持向量机的参数,待用。

1.3 支持向量机(SVM)

支持向量机理论(SVM)是由 V.Vapnik^[10]等人在统计学习 理论的基础上发展的一种机器学习方法,常用在包括线性和非 线性可分的二分类问题中,并且在解决小样本、非线性及高维 模式识别问题中表现出许多特有的优势。其算法如下:

考虑 n 个独立同分布的观测样本:{(x₁,y₁)(x₂,y₂)…(x₁,y₁)} ⊂R^N× {± 1},这里若 y=+1,x 被分类为正;若 y=-1,x 被分类为

负。対 x 进行分类 则需要寻找一个最佳超平面(OSH) (图 4)^[n]。
 超平面的方程如下:
 (w₀·x)+b=0
 (3)

其中 ||w₀||=1/d, d 指的是支持向量和超平面的距离 b 是分

类阈值 x 为输入向量或信号。最优超平面由支持向量(SVs)获 得。支持向量与超平面的距离是最短的。为了获得超平面 d 应 取最大值,即||w。|| 取最小值。这里用到拉格朗日乘数,被分配

Fig.4 Illustration of the Optimal Separating Hyperplane

给每个训练集,仅对支持向量是非零的。一旦获得,就计算出 超平面方程中的位置参数 过程如下:

$$w^{*}0 = \sum_{i=1}^{i} \alpha_{i}^{*} \cdot y_{i} \cdot x_{i}$$
(4)
$$b^{*} = \frac{1}{2} [(w_{0}^{*} \cdot x^{*}(1)) + (w_{0}^{*} \cdot x^{*}(-1))]$$
(5)

其中和为最优解条件下的 w 和 值,支持向量 x*(1)和 x*(-1)分 别取自类别 +1 和 -1 yi 是对应每个支持向量的分类标示 b 是 分类阈值[11]。

确定超平面后,一个新的输入测试信号 x_{test} 的类别就可以 确定了 Xtest 输入到(6)式。

$$f(x) = sign \{ \sum_{vectors-soporte} \alpha_i^* \cdot y_i \cdot (x_i \cdot x) + b^* \}$$
(6)
如果 sign 是正值,向量或测试信号就属于 +1 标示的-

类,如果是负的,则为-1标示的那一类。

数为 :f(x)=sign{
$$\sum \alpha_i \cdot y_i \cdot (x_i \cdot x) + b$$
 } (7)

这里 核函数 映射函数以及特征空间是一一对应的 确定 了核函数 K(x,y) 就隐含的确定了映射函数和特征空间 F。因 而核函数的选取就决定了 SVM 的性能。

本文中采用 RBF 核函数,因为 RBF 核是应用最广泛的 核 无论是低维、高维、小样本、大样本等情况 RBF 核函数均适 用 具有较宽的收敛域 是较为理想的分类依据函数^[12]。其数学 表达式如下:

$$K(x_i, x) = \exp(-\frac{|x - x_i|^2}{\sigma})$$
(8)

1.4 分类

为了得到一个预测模型 ,先把数据分成两部分即训练样本 和测试样本。训练样本用于学习以确立模型 测试样本 用于模 型分辨能力的测定。

本文方法在 matlab6.5 环境下运行,在仿真过程中采用的 是陆振波的支持向量机软件包[13],首先分别在室颤和非室颤信 号中选出 10s 信号作为训练样本,在每一 4s 滑动窗长度下根据 改进的 TCI 算法计算出各自的 TCI 值,并以此 TCI 值作为特 征向量输入到二分类支持向量机中 根据初始向量获得对训练 样本分类的最佳超平面(OSH),并建立 SVM 模型;模型建立 后,将测试样本应用于该模型,即将其他的信号作为测试样本, 进行相同处理,计算出相应的 TCI 值 输入到已建立的模型中。 该模型输出测试样本的预测分类结果(+1-非 VF,-1-VF),并根 据输出结果测定该模型的分辨能力,从而实现分类。这里,参数 的选择是通过试凑法(穷举法)¹⁴³选取的,用以控制支持向量的 个数和准确率,从而获得最佳超平面和最好的分辨率,确定最 终的 SVM 模型。首先为惩罚因子 C 和核函数的固有参数赋初 始值 然后根据实验开始测试 根据测试精度重复调整参数值 , 直至得到满意的精度为止。最终软件包的参数选择为 C=100, • 1754 •

p1=100_°

2 结果及讨论

本文中选用的滑动窗的长度为 4s ,4s 既可以实现对 TCI 方法的改进,并能保证信号的实时性,使得 ECG 信号在处理时 简便易行,达到了便携式心电监控仪的实时要求。 测试信号取自 BIH-MIT 数据库(48 个文件,每个文件2个 通道,每个通道1805s 长) CU 数据库(35 个文件,每个文件1 个通道,每个通道508s 长)。因此,每个算法有(窗长为4s) 个 测定结果。假定原数据库的注释是完全正确的,则算法的质量 参数如表1所示。

Table 1 Quality of ventricular fibrillation detection algorithm									
DB –	MIT DB				CU DB				
	Se	Sp	Рр	Ac	Se	Sp	Рр	Ac	
TCI	74.9	83.9	0.8	83.9	71.0	70.5	38.9	70.6	
VF	29.4	100	82.4	99.9	30.8	99.5	94.5	85.2	
SPEC	23.1	100	60.6	99.8	29.0	99.3	92.0	84.6	
CPLX	63	92.4	0.1	92.3	56.4	86.6	52.7	80.3	
PSR	74.8	99.2	13.4	99.2	70.2	89.3	65.0	85.1	
SVM(TCI)	88.6	96.1	3.6	96.1	77.3	84.0	59.0	80.2	

表1 室颤检测算法的质量参数

表 2 SVM(TCI)算法在 MIT 和 CU 数据库的总的质量参数

Table 2 Overall quality of CU&MIT database using the new algorithm

פח	CU&MIT DBoverall result						
DB –	Se	Sp	Рр	Ac			
SVM(TCI)	78.0	95.2	27.5	94.6			

表1中列出了新算法以及在文献^[5]中涉及到的其他算法的 灵敏度(Se)、特异性(Sp)、预测性(Pp)和准确度(Ac),文献^[5]中 提到的有越限区间算法(TCI)^[8],变频滤波算法(VF filter algorithm,VF)^[7],谱分析算法(spectral algorithm,SPEC)^[7],复杂度算 法(complexity measure algorithm,CPLX)^[15]和相空间重构算法 (phase space reconstruction PSR)^[2]。

表 2 中列出了,新算法对于 CU 和 MIT 数据库总体的灵敏 度,特异性,预测性和准确度。总体的质量参数是直接由 277163 个 结果计算出来的。

在除颤器中 特异性比灵敏性更重要 因为 没有病人能够 承受错误的除颤 这可能导致心脏骤停^[16]。因此 ,应尽量降低正 常窦性心律的检错率 ,即使以增加室颤错误检测率为代价。在 表1中 ,新算法的特异性明显优于灵敏度 ,更重要的是新算法 在灵敏度 ,特异性和预测性方面优于 TCI 和 CPLX。准确度给 出了算法的总体检测准确性 ,显然算法总体上具有比较好的准 确度。

3 结论

SVM 在对恶性心律的分类中提供了令人满意的结果,并 相对于其他分类技术表现出较大的优越性。鉴于 SVM 的较高 的普遍性特点,应当予以推广应用。

在新算法中 特征的提取起到非常关键的作用。采用改进 的 TCI 算法进行特征的提取,采用 4s 的窗长,既保留了 TCI 算 法的简单易行以及较好的实时性,又改进了 TCI 本身的缺陷; 并且采用绝对值阈值,又增大了 VF 和非 VF 信号的特征差距, 更易较准确的进行分类。

该算法经过改进后,可以嵌入到远程心电监测设备中,实

现室颤信号的实时监测。当检测到室颤信号时,系统通过无线 通信设备报警,以便对病人实施及时有效地抢救。

参考文献(Reference)

- Li Y, Bai BD, Jiao LC. The Mechanism of Classification for Support Vector Machines [J]. Systems Engineering and Eectronics, 2001, 23 (9):24-27
- [2] A Amann, R Tratnig, K. Unterkofler, Detecting Ventricular Fibrillation by Time-Delay Methods [J]. IEEE Trans. Biomed. Eng,2007, 54, (1): 174-177
- [3] Massachusetts Institute of Technology, MIT-BIH arrhythmia database. URL http://www.physionet.org/physiobank/database/mitdb
- [4] Massachusetts Institute of Technology, CU database. URL http://www. physionet.org/physiobank/database/cudb
- [5] American Heart Association, AHA database. URL http://www.americanheart.org
- [6] http://www.physionet.org/
- [7] A Amann, R Tratnig, K Unterkofler. Reliability of old and new ventricular fibrillation detection algorithms for automated external de-fibrillators [J]. BioMed. Eng. OnLine, 2005, 4, no. 60
- [8] N.V. Thakor, Y.S. Zhu, K.Y. Pan. Ventricular tachycardia and fibrillation detection by a sequential hypothesis testing algorithm [J]. IEEE Trans Biomed Eng, 1990,37(9):837-843
- [9] Muhammad Abdullah Arafat, Abdul Wadud Chowdhury, Md. Kamrul Hasan. A simple time domain algorithm for the detection of ventricular [J]. Signal, Image and Video Processing, DOI: 10.1007/ s11760-009-0136-1
- [10] V.Vapnik. Theory of Support Vector Machines [M]. Department of Computer Science, Royal Holloway University of London, 1996

(下转第1768页)

1998, 251(2): 471-476

- [3] Hosoya M, Kawamata Y, Fukusumi S, et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin [J]. J Biol Chem, 2000, 275(28): 21061-21067
- [4] 张志, 于波. Apelin/APJ 信号在心血管系统的生理和病理生理作用
 [J]. 国际心血管病杂志, 2008, 35(5): 284-286
 Zhang Zhi, Yu Bo. Pathophysiologic effects of Apelin/APJ signal in

cardiovascular system[J]. International Journal of Cardiovascular Disease, 2008, 35(5): 284-286

- [5] Kasai A, Shintani N, Oda M, et al. Apelin is a novel angiogenic factor in retinal endothelial cells [J]. Biochem Biophys Res Commun, 2004, 325(2): 395-400
- [6] Saint-Geniez M, Masri B, Malecaze F. et al. Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels[J]. Mech Dev, 2002, 110(1-2): 183-186
- [7] K lin RE, Kretz MP, Meyer AM, et al. Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis [J].Dev Biol, 2007, 305(2): 599-614
- [8] D'Aniello C, Lonardo E, Iaconis S, et al. G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway [J]. Circ Res, 2009, 105(3): 231-238
- [9] Devic E, Rizzoti K, Bodin S, et al. Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ[J]. Mech Dev, 1999, 84: 199-203
- [10] Ashley EA, Powers J, Chen M, et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo[J]. Cardiovasc Res, 2005, 65(1): 73-82
- [11] Zeng XX, Wilm TP, Sepich DS, et al. Apelin and its receptor control heart field formation during zebrafish gastrulation[J]. Dev Cell, 2007, 12(3): 391-402

- [12] Vodyanik MA, Yu J, Zhang X, et al. A mesoderm-derived precursor for mesenchymal stem and endothelial cells[J]. Cell Stem Cell, 2010, 7(6): 718-729
- [13] Scott IC, Masri B, D'Amico LA, et al. The G protein coupled receptor agtrl1b regulates early development of myocardial progenitors. Apelin and its receptor control heart field formation during zebrafish gastrulation[J]. Dev Cell, 2007, 12(3): 403-413
- [14] Inui M, Fukui A, Ito Y, et al. Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis [J]. Dev Biol, 2006, 298 (1): 188-200
- [15] Charo DN, Ho M, Fajardo G, et al. Endogenous regulation of cardiovascular function by apelin-APJ [J]. Am J Physiol Heart Circ Physiol, 2009, 297(5): H1904-1913
- [16] Kuba K, Zhang L, Imai Y, et al. Impaired heart contractility in apelin gene-deficient mice associated with aging and pressure overload [J]. Circ Res, 2007, 101: e32-e42
- [17] Ishida J, Hashimoto T, Hashimoto Y, et al. Regulatory roles for APJ, a seven-Transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo [J]. J Biol Chem, 2004, 279: 26274-26279
- [18] Gao LR, Zhang NK, Bai J, et al. The apelin-APJ pathway exists in cardiomyogenic cells derived from mesenchymal stem cells in vitro and in vivo[J]. Cell Transplant, 2010, 19(8): 949-958
- [19] Kitamura R, Takahashi T, Nakajima N, et al. Stage-specific role of endogenous Smad2 activation in cardiomyogenesis of embryonic stem cells[J]. Circ Res, 2007, 101: 78-87
- [20] David R, Brenner C, Stieber J, et al. MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wntsignalling[J]. Nat Cell Biol, 2008, 10: 338-345
- [21] Eyries M, Siegfried G, Ciumas M, et al. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis[J]. Circ Res, 2008, 103: 432-440

(上接第1754页)

- [11] J Millet-Roig, R Ventura-Galiano, F J Chorro-Gasc6, et al. Support vector machine for arrhythmia discrimination with wavelet transform-based feature selection [J]. Computers in Cardiology, 2000, 27, 407-410
- [12] 李盼池,许少华. 支持向量在模式识别中的核函数特性分析 [J].计 算机工程与设计,2005,26 (2):302-304

Li PC, Xu SH. Support vector machine and kernel function characteristic analysis in pattern recognition. Computer Engineering and design 2005; 26:302-304

[13] The package canbe download on the website http://luzhenbo.88uu.

com.cn/

- [14] Lin Shengliang, Liu Zhi, Parameter Selection in SVM with RBF Kernal Function [J]. Journal of Zhejiang University of Technology, 2007, 35 (2) :163-167
- [15] X. Zhang, Y. Zhu, N. Thakor, et al. Detecting ventricular tachycardia and fibrillation by complexity measure [J]. IEEE Trans. Biomed. Eng, 1999, 46(1): 548-55
- [16] Qun L, Jie Zhao, YN Zhao, et al. Detection of ventricular fibrillation by support vector machine algorithm [C]. Proceedings of the 2009 International Asia Conference on Informatics in Control, Automation and Robotics(IEEE), 2009, 287-290